KOÇ UNIVERSITY

Fall Semester 2011

College of Arts and Sciences

Section 5

Quiz 12

22 December 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A block of mass M attached to a horizontal spring with force constant k is moving in simple harmonic motion with amplitude A_l . As the block passes through its equilibrium position, another block of mass m is dropped from a small height and sticks to it. (a) Find the new amplitude and period of the motion. (b) Repeat part (a) if the second block is dropped onto the first block when it is at one end of its path.

face M $\alpha_1 = \int_{M}^{K}$

at M. VSY JA, WI => Ma = AIJM

we have a completely inelastic collision at drop moment so $P_i = P_f$

 $MV_{max} = (M+m)V_{max} \Rightarrow V_{max} = \frac{M}{M+m}V_{max} = \frac{M}{M+m}A_1\sqrt{\frac{k}{M}} = \frac{A\sqrt{kM}}{M+m}$

We will use conservation of Energy after collision

(m+m) V = # Kx = # K A

 $A_{2}^{2} = \frac{M+m}{K} A_{1}^{2} \frac{(KM)}{(M+m)^{2}} \rightarrow A_{2} = \frac{M}{m+M} A_{1}$

 $\mathcal{U}_{2} = \sqrt{\frac{k}{M+m}}$

KOÇ UNIVERSITY

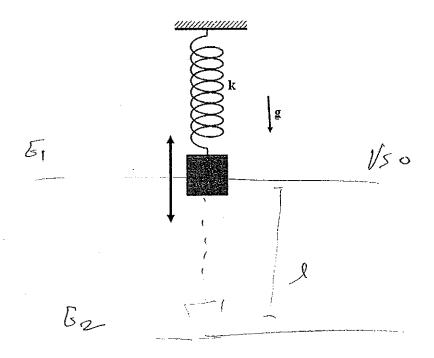
Fall Semester 2011

College of Arts and Sciences

Section 4

Quiz 12

22 December 2011


Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A spring with force constant k is hanged in the vertical direction. The spring has negligible mass and it remains initially at rest at its unstretched position. A point particle with mass m is attached to the free end of the spring with no initial speed. Use energy conservation to find the amplitude of the resulting oscillations

Consuration of energy B, 5 F 2

05-mgl+ = kl2 => mgl5 = kl2 =>

In Amplitude: As 1/25 mg

KOÇ UNIVERSITY

Fall Semester 2011

College of Arts and Sciences

Section 3

Quiz 12

22 December 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A physical pendulum formed by a rigid body having two point particles each with mass m swings around the vertical axis, as shown below. You can ignore the mass of the wires forming the rigid body. Find an expression for the period of small oscillations that will be performed by this physical pendulum.

$$T = 2\pi \sqrt{\frac{I}{M8dcm}}$$

$$T = 2\pi \sqrt{\frac{5}{2}}$$

$$T = 2\pi \sqrt{\frac{5}{2}}$$

$$T = 2\pi \sqrt{\frac{5}{2}}$$

$$T = 2\pi \sqrt{\frac{5}{2}}$$

 $\int_{\mathbf{m}}^{\mathbf{d}} d \int_{\mathbf{m}}^{\mathbf{g}} \int_{\mathbf{m}}^{\mathbf{g}} d \int_{\mathbf{m}}^{\mathbf{$

 $d_{cm} = \frac{md + 2wd}{2w} = \frac{3}{2}d$

KOÇ UNIVERSITY

Fall Semester 2011

College of Arts and Sciences

Section 2

Quiz 12

22 December 2011

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A mass is vibrating at the end of a spring of force contant 225 N/m. Figure below shows a graph of its position x as a function of time t. (a) At what times is the mass not moving? (b) How much energy did this system originally contain? (c) How much energy did the system lose between t=1 s and t=4 s?

Ts 215) - 15 (5')

ev s r (rad/s)

Thus The

25x corut

2 (ts2n) 5 7c

Bus 2 1001 2 5 2 (226) (7, 2, 56512-5 151

5,-825 2 1 (2(+51) -x2(+52)]

 $5\frac{1}{2}$ x 225 [36 - 25] = 1237.5 (5)

KOÇ UNIVERSITY

Fall Semester 2011

College of Arts and Sciences

Section 1

Quiz 12

22 December 2011

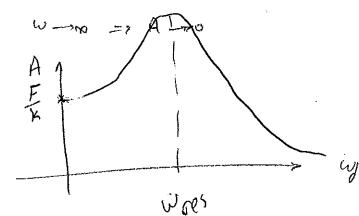
Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

A dampled oscillator that is subject to a sinusoidal driving force will perform oscillations with an amplitude given as:


$$A = \frac{F_{max}}{\sqrt{(k - m\omega_d^2)^2 + b^2\omega_d^2}}$$

where ω_d and F_{max} are the angular frequency and amplitude of the driving sinusoidal force.

- a) Sketch A as a function of ω_d indicating the values A take for $\omega_d = 0$ and $\omega_d \to \infty$.
- b) Find an expression for the frequency, ω_d that will maximize A.

$$\frac{dA_{\text{rw}}s_0}{Jw} = \frac{y_3s_0}{Jw} \text{ and } 2m(k-my^2)-h^2s_0 = y_3\sqrt{k-\frac{b^2}{m-2m}}$$

$$\frac{dA_{\text{rw}}s_0}{Jw} = \frac{y_3s_0}{A_{\text{rw}}s_0} = \frac{F_{\text{mex}}}{k} + \frac{b^2}{m^2-2m} = A = \frac{F_{\text{mex}}}{b\sqrt{k-\frac{b^2}{m-2m}}}$$

